

Project Controls Expo – 14th November 2018 Emirates Arsenal Stadium, London

Are Triangles The Future?

Ben Fry MEng, MAPM Principal Risk Management Consultant

QINETIQ/PUB18/04122

About the Speaker – Ben Fry MEng MAPM

- Worked in Project Controls for the past 15 years;
 - Specialised in Risk Management and Quantitative Risk Analysis (QRA)

□ Worked in a range of domains and organisations;

- Submarines, Air, Land, Sea, Logistics, Construction
- Recently worked on Hinckley Point C (HPC);
 - Risk Manager for a £1.4Bn element of the project
 - Responsible for QRA across HPC
- Currently Principal Risk Management Consultant and Team Leader at QinetiQ;
 - Leading risk management improvement for a £0.5Bn programme

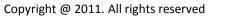
About QinetiQ

Air and Space

Maritime, Land and Weapons

North America

Cyber, Information & Training


OptaSense[®]

International

QINETIQ

About The Topic

Having the right amount of contingency is critical to businesses;

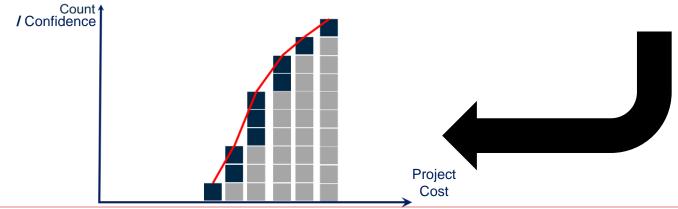
- Too much you risk losing the work to a cheaper competitor
- Too little you risk delivering late or even making a loss

Many organisations use Monte-Carlo simulations to help determine contingency;

- Technique that allows you to simulate running the project 1000's times
- Builds up a statistical understanding of how our project will run
- Dominance of "Triangular Distributions" in these models

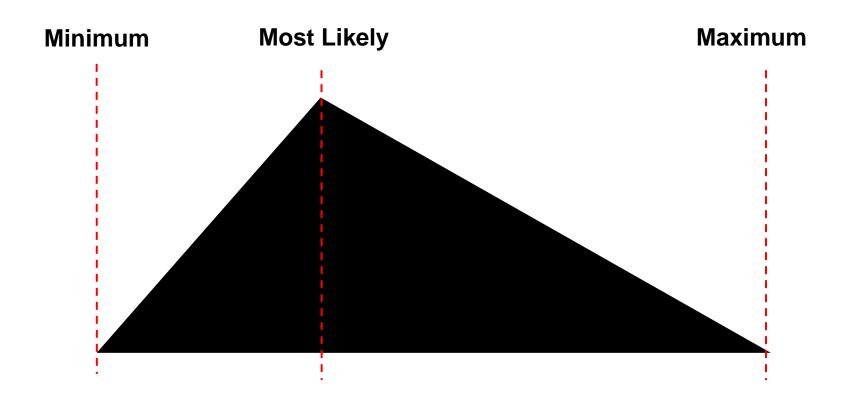
Are the use of these Triangular distributions detracting or enhancing the validity of models underpinning our decision making?

Overview


- Monte-Carlo overview
- □ What is a 3 Point Estimate (3PE) and why might it impact model accuracy?
- Mock examples of a 3PEs impact on a Monte-Carlo model
- Case studies to understand the impact of 3PEs on real decisions

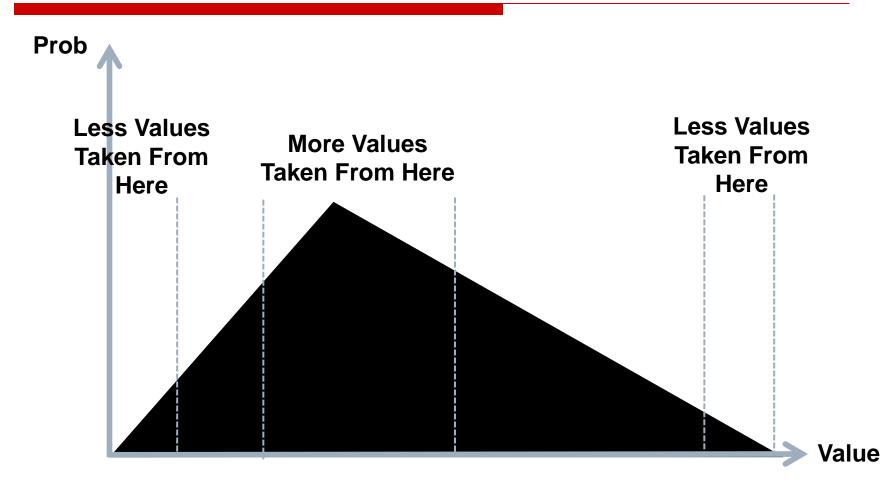
How Does Monte-Carlo Simulation Work?

Inputs					Outputs			
		3 Point Estimates			Iteration	Iteration	Iteration	
	Prob	Min	ML	Max	1	2	3	
Risk A	70%	£10	£12	£20	£14	£19	£11	
Risk B	50%	£15	£15	£30	£O	£15	£O	
Risk C	25%	£5	£10	£20	£O	£O	£17	
Risk D	40%	£40	£50	£60	£48	£52	£O	
Risk E	50%	£10	£30	£35	£O	£15	£32	
					£62	£101	£60	

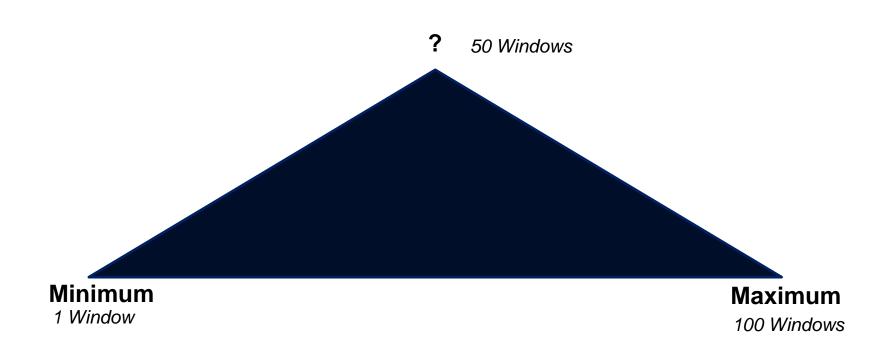


Copyright @ 2011. All rights reserved

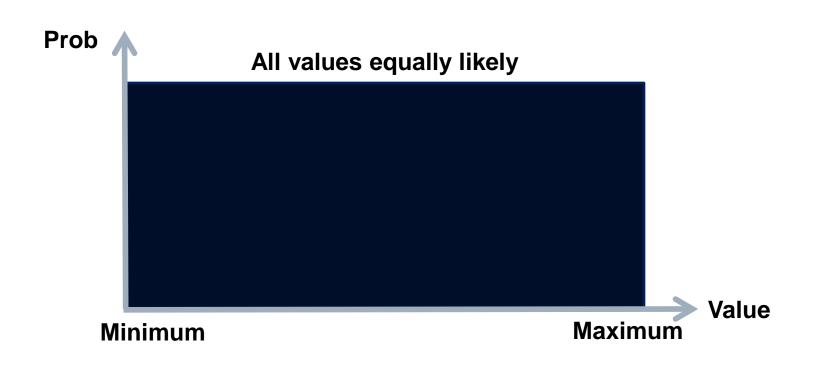
QINETIQ


3 Point Estimates – Triangular Distributions

3 Point Estimates - Triangular Distributions


Example – Building Refurbishment Risk

- We are preparing a bid for the refurbishment of an office block in the US
- We know very little about the building or its condition;
 - We have a basic schematic but no survey information (100 Windows)
 - Our cost and schedule has assumed that the windows will not require replacement
- There is a risk that some or all of the windows will require refurbishment
- How much could this risk increase our costs by if it occurs?

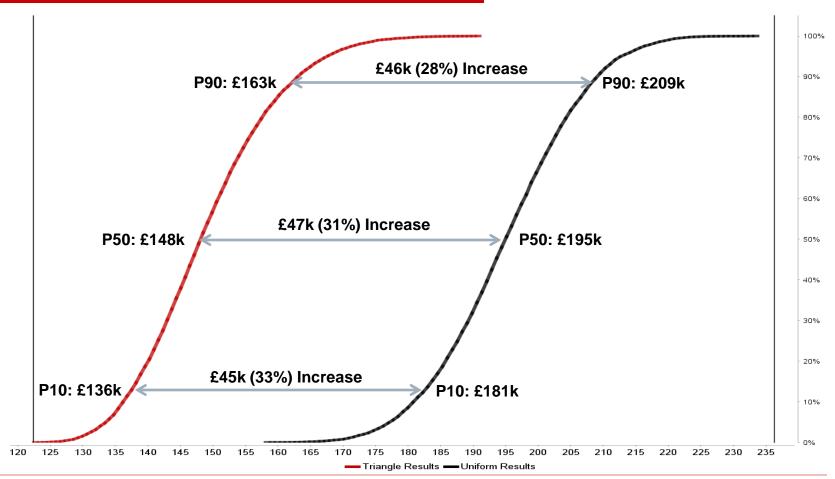

Example – Building Refurbishment Risk

2 Point Estimates - Uniform Distributions

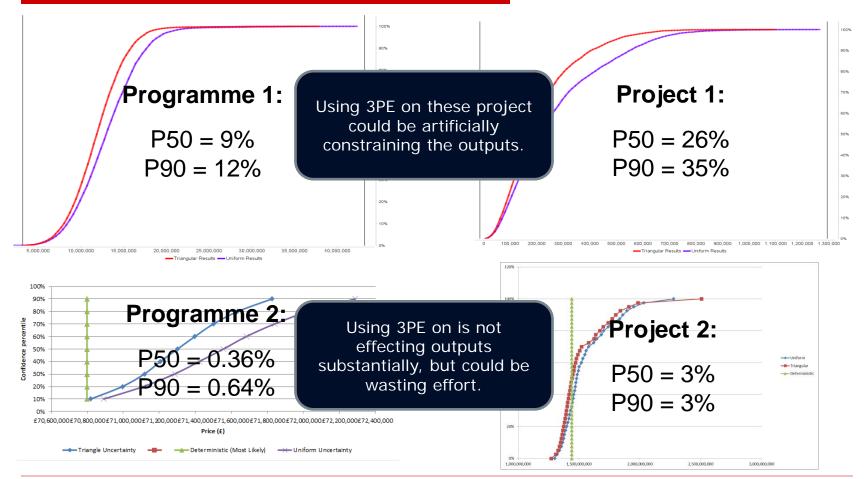
What Is The Best Distribution?

Depends on the information we have!

So What? – Mock Case Study


Estimating Uncertainty	Min (£k)	Most Likely (£k)	Max (£k)
Foundations	30	35	50
Structure	50	52	55
Roof	5	8	12
Glazing	7	8	15
Plumbing	5	6	20
Electrical	2	4	8
Finishing	8	12	25
Inspection	1	2	10

Risks		Min (£k)	Most Likely (£k)	Max (£k)
There is a risk of planning permission rejection resulting in redesign.		10	12	20
There is a risk of unexpected ground conditions leading to remedial work		8	10	15
There is a risk that the glazing suppliers become insolvent.		7	8	15
There is a risk that the new formula paint doesn't provide required finish		1	2	3
There is a risk that changes in legislation make it illegal to install the electrical system that has been purchased.		2	3	6


So What? – Monte-Carlo Outputs

Copyright @ 2011. All rights reserved

Real So What? – Actual Case Studies

Copyright @ 2011. All rights reserved

Are Triangles The Future?

True maturity is;

- Understanding what information you have and determining if a 3PE is the best way to build a model.
- Not assuming that all model inputs require a 3PE and that a 2PE is less mature.

Only adopt a 3 Point Estimate (Triangular or otherwise) where we have sufficient information (or knowledge) to define a credible Most Likely

Challenge whether for small projects we can justify the effort in producing a 3 Point Estimate or if 2 points are sufficient

Any Questions?

Ben Fry QinetiQ Principal Risk Consultant 07825 364366 BDFry1@QinetiQ.com

